from wiki.
Hot wire sensor (MAF)
A
hot wire mass airflow sensor determines the mass of air flowing into the engine’s air intake system. The
theory of operation of the hot wire mass airflow sensor is similar to that of the
hot wire anemometer (which determines air velocity). The General Motors division (GM) was the first car company to use the hot wire sensor.[
citation needed] This is achieved by heating a wire with an electric current that is suspended in the engine’s air stream, like a toaster wire. The wire's
electrical resistance increases as the wire’s temperature increases, which limits
electrical current flowing through the circuit. When air flows past the wire, the wire cools, decreasing its resistance, which in turn allows more current to flow through the circuit. As more current flows, the wire’s temperature increases until the resistance reaches equilibrium again. The amount of current required to maintain the wire’s temperature is proportional to the mass of air flowing past the wire. The integrated electronic circuit converts the measurement of current into a voltage signal which is sent to the ECU.
If air density increases due to pressure increase or temperature drop, but the air volume remains constant, the denser air will remove more heat from the wire indicating a higher mass airflow. Unlike the vane meter's paddle sensing element, the hot wire responds directly to air density. This sensor's capabilities are well suited to support the gasoline combustion process which fundamentally responds to air mass, not air volume. (See
stoichiometry.)
This sensor sometimes employs a mixture screw, but this screw is fully electronic and uses a variable resistor (potentiometer) instead of an air bypass screw. The screw needs more turns to achieve the desired results. A hot wire burn-off cleaning circuit is employed on some of these sensors. A burn-off relay applies a high current through the platinum hot wire after the vehicle is turned off for a second or so, thereby burning or vaporizing any contaminants that have stuck to the platinum hot wire element.
The hot film MAF sensor works somewhat similar to the hot wire MAF sensor, but instead it usually outputs a frequency signal. This sensor uses a hot film-grid instead of a hot wire. It is commonly found in late 80’s early 90’s fuel-injected vehicles. The output frequency is directly proportional to the amount of air entering the engine. So as air flow increases so does frequency. These sensors tend to cause intermittent problems due to internal electrical failures. The use of an oscilloscope is strongly recommended to check the output frequency of these sensors. Frequency distortion is also common when the sensor starts to fail. Many technicians in the field use a tap test with very conclusive results. Not all HFM systems output a frequency. In some cases, this sensor works by outputting a regular varying voltage signal.
Some of the benefits of a hot-wire MAF compared to the older style vane meter are:
- responds very quickly to changes in air flow
- low airflow restriction
- smaller overall package
- less sensitive to mounting location and orientation
- no moving parts improve its durability
- less expensive
- separate temperature and pressure sensors are not required (to determine air mass)
There are some drawbacks:
- dirt and oil can contaminate the hot-wire deteriorating its accuracy
- installation requires a laminar flow across the hot-wire