Engine Power Is Reduced - Ongoing Issue, Updates throughout thread.

Disclaimer: Links on this page pointing to Amazon, eBay and other sites may include affiliate code. If you click them and make a purchase, we may earn a small commission.

OP
OP
M

Mighty Hd

Full Access Member
Joined
Oct 2, 2010
Posts
217
Reaction score
45
Location
Florida
I was able to get the following data from my scan tool, I didn't think to look at the live data.

2wd:
(Automatic Transfer Case) ATC Range Switch: 1.97v
ATC Range Select Switch Reference: 5.00v
Range Actuator Position Sensor Voltage: 7.60v
Range Actuator Direction Signal: 4.15v
Range Actuator Diagnostic Signal: 4.15v
ATC Range Position Sensor Volts: ON
ATC Range Position Sensor: 37 deg
ATC Range Position Sensor: 2.85v
Control Module Voltage Signal: 12.20v

4hi:
ATC Range Select Switch: 3.00v
ATC Range Select Switch Reference: 5.00v
Range Actuator Command: 0%
Range Actuator Current -0.20 amps
Range Actuator Position Sensor: 37deg
Range Actuator Position Sensor Voltage: 7.60v
Range Actuator Direction Signal: 4.15v
Range Actuator Diagnostic Signal: 4.15v
ATC RAnge position Sensor: 37 deg
ATC Range position sensor: 3.00v
 

Fless

Staff member
Super Moderator
Joined
Apr 2, 2017
Posts
12,253
Reaction score
25,012
Location
Elev 5,280
Are the codes you posted current, or history?

Have they been cleared, only to have them return?
 
OP
OP
M

Mighty Hd

Full Access Member
Joined
Oct 2, 2010
Posts
217
Reaction score
45
Location
Florida
There is no CEL or service 4wd indicator on the dash. Whenever I go into the transfer case control module to read the codes, they show up.

I can clear them, and the same ones immediately return.
 
OP
OP
M

Mighty Hd

Full Access Member
Joined
Oct 2, 2010
Posts
217
Reaction score
45
Location
Florida
The codes are still present in the transfer case module.

I’m now getting “Engine Power Reduced” with a large number of codes on the ECU and now the Fuel Pump Module again.

P0053
P0054
P0060
P0116
P0128
P013a
P013b
P013c
P013d
P015A
P015c
P0420
P0430
P0442
P0446
P0451
P0454
P0455
P0646
P0496
P0506
P0507
P1400
P3400
P3401
P3425
P3441
P3449
P0011
P0030
P0036
P0050
P0056
P0101
P0102
P0103
P0106
P0121
P0131
P0132
P0133
P0134
P0135
P0137
P0138
P013E
P013F
P0140
P0141
P014A
P014B
P0151
P0152
P0153
P0154
P0155
P0157
P0158
P0160

Vehicle starts up and runs, once I clear the codes it will drive ok until the next ignition cycle.

Clearing the codes, they will immediately return upon the next ignition cycle.
 

Fless

Staff member
Super Moderator
Joined
Apr 2, 2017
Posts
12,253
Reaction score
25,012
Location
Elev 5,280
Not a clue, although I suspect that there is one or more bad grounds or rotted cables (positive and/or negative). Have you pulled the ECU connectors off and checked them for cleanliness?
 
OP
OP
M

Mighty Hd

Full Access Member
Joined
Oct 2, 2010
Posts
217
Reaction score
45
Location
Florida
Not a clue, although I suspect that there is one or more bad grounds or rotted cables (positive and/or negative). Have you pulled the ECU connectors off and checked them for cleanliness?
I did that yesterday, no indications of corrosion.

I have yanked, removed, cleaned and retightened the grounds at
Battery to engine block
Ground strap from the firewall to engine
Ground wire from battery to behind the front bumper
Ground wire under driver side door on the body mount
Ground wire on the LT rest body mount. Two at this location

I’m getting engine reduced power consistently after a 5-7 mile drive to work and let the vehicle cold soak in the parking lot for 8.5 hrs.

Starts up fine, no MIL, get the reduced power message. Runs fine as well.

Get back home and it’s loaded with codes again. Clear term and it’s fine until,the next restart and cold soak.

Key on, engine off. I can audibly hear The throttle body actuating. It’s a bit clankly sounding.

Wires at TB and MAF checked, And both throughly cleaned.
 
OP
OP
M

Mighty Hd

Full Access Member
Joined
Oct 2, 2010
Posts
217
Reaction score
45
Location
Florida
What is a hall monitor?

A bad cell in a battery can pass tests and cause all kinds of havoc with the electrical
I was having trouble with bad batteries every 6 to 12 months. Once I disconnected the whole monitor on the negative battery cable that problem on the way and has been fine for years.

Battery basically ran down to around 11.5 to 12 V and the alternator would begin charging again. The vehicle never ran long enough to fully recover from when the battery ran down so therefore the battery was always in a low state of charge five out of the seven days a week due to my short drive to work.



this is right out of the GM "manual":

The electrical power management (EPM) system is designed to monitor and control the charging system and send diagnostic messages to alert the driver of possible problems with the battery and generator. This EPM system primarily utilizes existing on-board computer capability to maximize the effectiveness of the generator, to manage the load, improve battery state-of-charge and life, and minimize the system's impact on fuel economy. The EPM system performs 3 functions:

• It monitors the battery voltage and estimates the battery condition.

• It takes corrective actions by boosting idle speeds, and adjusting the regulated voltage.

• It performs diagnostics and driver notification.

The battery condition is estimated during ignition-off and during ignition-on. During ignition-off the state-of-charge (SOC) of the battery is determined by measuring the open-circuit voltage. The SOC is a function of the acid concentration and the internal resistance of the battery, and is estimated by reading the battery open circuit voltage when the battery has been at rest for several hours.

The SOC can be used as a diagnostic tool to tell the customer or the dealer the condition of the battery. Throughout ignition-on, the algorithm continuously estimates SOC based on adjusted net amp hours, battery capacity, initial SOC, and temperature.

While running, the battery degree of discharge is primarily determined by a battery current sensor, which is integrated to obtain net amp hours.

In addition, the EPM function is designed to perform regulated voltage control (RVC) to improve battery SOC, battery life, and fuel economy. This is accomplished by using knowledge of the battery SOC and temperature to set the charging voltage to an optimum battery voltage level for recharging without detriment to battery life.

The Charging System Description and Operation is divided into 3 sections. The first section describes the charging system components and their integration into the EPM. The second section describes charging system operation. The third section describes the instrument panel cluster (IPC) operation of the charge indicator, driver information center (DIC) messages, and voltmeter operation.

Charging System Components
Generator
The generator is a serviceable component. If there is a diagnosed failure of the generator it must be replaced as an assembly. The engine drive belt drives the generator. When the rotor is spun it induces an alternating current (AC) into the stator windings. The AC voltage is then sent through a series of diodes for rectification. The rectified voltage has been converted into a direct current (DC) for use by the vehicles electrical system to maintain electrical loads and the battery charge. The voltage regulator integral to the generator controls the output of the generator. It is not serviceable. The voltage regulator controls the amount of current provided to the rotor. If the generator has field control circuit failure, the generator defaults to an output voltage of 13.8 volts.

Body Control Module (BCM)
The body control module (BCM) is a GMLAN device. It communicates with the engine control module (ECM) and the instrument panel cluster (IPC) for electrical power management (EPM) operation. The BCM determines the output of the generator and sends the information to the ECM for control of the generator field control circuit. It monitors the generator field duty cycle signal circuit information sent from the ECM for control of the generator. It monitors a battery current sensor, the battery positive voltage circuit, and estimated battery temperature to determine battery state of charge (SOC). The BCM sends idle boost requests to the ECM.

Battery Current Sensor
The battery current sensor is a serviceable component that is connected to the negative battery cable at the battery. The battery current sensor is a 3-wire hall effect current sensor. The battery current sensor monitors the battery current. It directly inputs to the BCM. It creates a 5-volt pulse width modulation (PWM) signal of 128 Hz with a duty cycle of 0-100 percent. Normal duty cycle is between 5-95 percent. Between 0-5 percent and 95-100 percent are for diagnostic purposes.

Engine Control Module (ECM)
The ECM directly controls the generator field control circuit input to the generator. The ECM receives control decisions based on messages from the BCM. It monitors the generators generator field duty cycle signal circuit and sends the information to the BCM.

Instrument Panel Cluster (IPC)
The IPC provides a means of customer notification in case of a failure and a voltmeter. There are 2 means of notification, a charge indicator and a driver information center (DIC) message of SERVICE BATTERY CHARGING SYSTEM.

Charging System Operation
The purpose of the charging system is to maintain the battery charge and vehicle loads. There are 6 modes of operation and they include:

• Battery Sulfation Mode

• Charge Mode

• Fuel Economy Mode

• Headlamp Mode

• Start Up Mode

• Voltage Reduction Mode

The engine control module (ECM) controls the generator through the generator turn on signal. It monitors the generator performance though the generator field duty cycle signal circuit. The signal is a 5-volt pulse width modulation (PWM) signal of 128 Hz with a duty cycle of 0-100 percent. Normal duty cycle is between 5-95 percent. Between 0-5 percent and 95-100 percent are for diagnostic purposes. The following table shows the commanded duty cycle and output voltage of the generator:

Commanded Duty Cycle
Generator Output Voltage

10%
11 V

20%
11.56 V

30%
12.12 V

40%
12.68 V

50%
13.25 V

60%
13.81 V

70%
14.37 V

80%
14.94 V

90%
15.5 V


The generator provides a feedback signal of the generator voltage output through the generator field duty cycle signal circuit to the ECM. This information is sent to the body control module (BCM). The signal is a 5-volt PWM signal of 128 Hz with a duty cycle of 0-100 percent. Normal duty cycle is between 5-99 percent. Between 0-5 percent and 100 percent are for diagnostic purposes.

Battery Sulfation Mode
The BCM will enter this mode when the interpreted generator output voltage is less than 13.2 volts for 45 minutes. When this condition exists the BCM will enter Charge Mode for 2-3 minutes. The BCM will then determine which mode to enter depending on voltage requirements.

Charge Mode
The BCM will enter Charge Mode when ever one of the following conditions are met.

• The wipers are ON for more than 3 seconds.

• GMLAN (Climate Control Voltage Boost Mode Request) is true, as sensed by the HVAC control head. High speed cooling fan, rear defogger and HVAC high speed blower operation can cause the BCM to enter the Charge Mode.

• The estimated battery temperature is less than 0°C (32°F).

• Battery State of Charge is less than 80 percent.

• Vehicle Speed is greater than 145 kph (90 mph)

• Current Sensor Fault Exists

• System Voltage was determined to be below 12.56 volts

• Tow/Haul Mode is enabled

When any one of these conditions is met, the system will set targeted generator output voltage to a charging voltage between 13.9-15.5 volts, depending on the battery state of charge and estimated battery temperature.

Fuel Economy Mode
The BCM will enter Fuel Economy Mode when the ambient air temperature is at least 0°C (32°F) but less than or equal to 80°C (176°F), the calculated battery current is less than 15 amps and greater than -8 amps, and the battery state of charge (SOC) is greater than or equal to 80 percent. Its targeted generator output voltage is the open circuit voltage of the battery and can be between 12.5-13.1 volts. The BCM will exit this mode and enter Charge Mode when any of the conditions described above are present.

Headlamp Mode
The BCM will enter Headlamp Mode when ever the headlamps are ON (high or low beams). Voltage will be regulated between 13.9-14.5 volts

Start Up Mode
When the engine is started the BCM sets a targeted generator output voltage of 14.3 volts for 30 seconds.

Voltage Reduction Mode
The BCM will enter Voltage Reduction Mode when the calculated battery temperature is above 0°C (32°F). The calculated battery current is less than 1 amp and greater than -7 amps, and the generator field duty cycle is less than 99 percent. Its targeted generator output voltage is 13 volts. The BCM will exit this mode once the criteria are met for Charge Mode.

Instrument Panel Cluster (IPC) Operation
Charge Indicator Operation
The instrument panel cluster (IPC) illuminates the charge indicator and displays a warning message in the driver information center (DIC) when the one or more of the following occurs:

• The engine control module (ECM) detects that the generator output is less than 11 volts or greater than 16 volts. The IPC receives a GMLAN message from the ECM requesting illumination.

• The BCM determines that the system voltage is less than 11 volts or greater than 16 volts.

• The IPC receives a GMLAN message from the body control module (BCM) indicating there is a system voltage range concern.

• The IPC performs the displays test at the start of each ignition cycle. The indicator illuminates for approximately 3 seconds.

• The ignition is ON, with the engine OFF.

Battery Voltage Gauge Operation
The IPC displays the system voltage as received from the BCM over the GMLAN serial data circuit. If there is no communication with the BCM then the gauge will indicate minimum.

Utilities and light duty full size pickups are equipped with a new regulated voltage control (RVC) system. This system turns off the alternator when it is not required in order to improve fuel economy. The generator will turn back on when additional voltage is required. This will cause the voltmeter to fluctuate between 12 and 14 volts as opposed to non-regulated systems which usually maintain a more consistent reading of 14 volts. This fluctuation with the RVC system is normal system operation and NO repairs should be attempted.

SERVICE BATTERY CHARGING SYSTEM
The BCM and the ECM will send a GMLAN message to the DIC for the SERVICE BATTERY CHARGING SYSTEM message to be displayed. It is commanded ON when a charging system DTC is a current DTC. The message is turned OFF when the conditions for clearing the DTC have been met.
 

Forum statistics

Threads
132,901
Posts
1,876,325
Members
97,826
Latest member
RockyD95
Top